Convergence rates analysis of Tikhonov regularization for nonlinear ill-posed problems with noisy operators
نویسندگان
چکیده
We investigate convergence rates of Tikhonov regularization for nonlinear ill-posed problems when both the right-hand side and the operator are corrupted by noise. Two models of operator noise are considered, namely uniform noise bounds and point-wise noise bounds. We derive convergence rates for both noise models in Hilbert and in Banach spaces. These results extend existing results where the forward operator is mostly assumed to be linear.
منابع مشابه
Solving a nonlinear inverse system of Burgers equations
By applying finite difference formula to time discretization and the cubic B-splines for spatial variable, a numerical method for solving the inverse system of Burgers equations is presented. Also, the convergence analysis and stability for this problem are investigated and the order of convergence is obtained. By using two test problems, the accuracy of presented method is verified. Additional...
متن کاملA convergence analysis for Tikhonov regularization of nonlinear ill-posed problems
In this paper we consider the a posteriori parameter choice strategy proposed by Scherzer et al in 1993 for the Tikhonov regularization of nonlinear ill-posed problems and obtain some results on the convergence and convergence rate of Tikhonov regularized solutions under suitable assumptions. Finally we present some illustrative examples.
متن کاملApplications of the Modified Discrepancy Principle to Tikhonov Regularization of Nonlinear Ill-posed Problems∗
In this paper, we consider the finite-dimensional approximations of Tikhonov regularization for nonlinear ill-posed problems with approximately given right-hand sides. We propose an a posteriori parameter choice strategy, which is a modified form of Morozov’s discrepancy principle, to choose the regularization parameter. Under certain assumptions on the nonlinear operator, we obtain the converg...
متن کاملIll-Posed and Linear Inverse Problems
In this paper ill-posed linear inverse problems that arises in many applications is considered. The instability of special kind of these problems and it's relation to the kernel, is described. For finding a stable solution to these problems we need some kind of regularization that is presented. The results have been applied for a singular equation.
متن کاملConvergence rates in constrained Tikhonov regularization: equivalence of projected source conditions and variational inequalities
In this paper, we enlighten the role of variational inequalities for obtaining convergence rates in Tikhonov regularization of nonlinear ill-posed problems with convex penalty functionals under convexity constraints in Banach spaces. Variational inequalities are able to cover solution smoothness and the structure of nonlinearity in a uniform manner, not only for unconstrained but, as we indicat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012